19 research outputs found

    Boolean like algebras

    Get PDF
    Using Vaggione’s concept of central element in a double pointed algebra, we introduce the notion of Boolean like variety as a generalization of Boolean algebras to an arbitrary similarity type. Appropriately relaxing the requirement that every element be central in any member of the variety, we obtain the more general class of semi-Boolean like varieties, which still retain many of the pleasing properties of Boolean algebras. We prove that a double pointed variety is discriminator i↵ it is semi-Boolean like, idempotent, and 0-regular. This theorem yields a new Maltsev-style characterization of double pointed discriminator varieties. Moreover, we show that every idempotent semi-Boolean-like variety is term equivalent to a variety of noncommutative Boolean algebras with additional regular operations

    Physics, Topology, Logic and Computation: A Rosetta Stone

    Full text link
    In physics, Feynman diagrams are used to reason about quantum processes. In the 1980s, it became clear that underlying these diagrams is a powerful analogy between quantum physics and topology: namely, a linear operator behaves very much like a "cobordism". Similar diagrams can be used to reason about logic, where they represent proofs, and computation, where they represent programs. With the rise of interest in quantum cryptography and quantum computation, it became clear that there is extensive network of analogies between physics, topology, logic and computation. In this expository paper, we make some of these analogies precise using the concept of "closed symmetric monoidal category". We assume no prior knowledge of category theory, proof theory or computer science.Comment: 73 pages, 8 encapsulated postscript figure

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    A Teaching Tool for Proving Equivalences between Logical Formulae

    No full text

    REXband : a Multi-User Interactive Exhibit to Explore Medieval Music

    Get PDF
    Abstract. Van Glabbeek (1990) presented the linear time/branching time spectrum of behavioral equivalences for finitely branching, concrete, sequential processes. He studied these semantics in the setting of the basic process algebra BCCSP, and tried to give finite complete axiomatizations for them. Obtaining such axiomatizations in concurrency theory often turns out to be difficult, even in the setting of simple languages like BCCSP. This has raised a host of open questions that have been the subject of intensive research in recent years. Most of these questions have been settled over BCCSP, either positively by giving a finite complete axiomatization, or negatively by proving that such an axiomatization does not exist. Still some open questions remain. This paper reports on these results, and on the state-of-the-art in axiomatizations for richer process algebras with constructs like sequential and parallel composition.

    Advanced trauma life support, 8th edition, the evidence for change.

    No full text
    The American College of Surgeons Committee on Trauma's Advanced Trauma Life Support Course is currently taught in 50 countries. The 8th edition has been revised following broad input by the International ATLS subcommittee. Graded levels of evidence were used to evaluate and approve changes to the course content. New materials related to principles of disaster management have been added. ATLS is a common language teaching one safe way of initial trauma assessment and management

    Topoisomerase inhibitors

    No full text
    corecore